Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 87, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36604422

RESUMEN

Theoretical studies have long proposed that adaptation allows the brain to effectively use the limited response range of sensory neurons to encode widely varying natural inputs. However, despite this influential view, experimental studies have exclusively focused on how the neural code adapts to a range of stimuli lying along a single feature axis, such as orientation or contrast. Here, we performed electrical recordings in macaque visual cortex (area V4) to reveal significant adaptive changes in the neural code of single cells and populations across multiple feature axes. Both during free viewing and passive fixation, populations of cells improved their ability to encode image features after rapid exposure to stimuli lying on orthogonal feature axes even in the absence of initial tuning to these stimuli. These results reveal a remarkable adaptive capacity of visual cortical populations to improve network computations relevant for natural viewing despite the modularity of the functional cortical architecture.


Asunto(s)
Neuronas , Corteza Visual , Neuronas/fisiología , Corteza Visual/fisiología , Estimulación Luminosa/métodos
2.
Front Neural Circuits ; 15: 718348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512276

RESUMEN

Neuromodulatory systems may provide information on social context to auditory brain regions, but relatively few studies have assessed the effects of neuromodulation on auditory responses to acoustic social signals. To address this issue, we measured the influence of the serotonergic system on the responses of neurons in a mouse auditory midbrain nucleus, the inferior colliculus (IC), to vocal signals. Broadband vocalizations (BBVs) are human-audible signals produced by mice in distress as well as by female mice in opposite-sex interactions. The production of BBVs is context-dependent in that they are produced both at early stages of interactions as females physically reject males and at later stages as males mount females. Serotonin in the IC of males corresponds to these events, and is elevated more in males that experience less female rejection. We measured the responses of single IC neurons to five recorded examples of BBVs in anesthetized mice. We then locally activated the 5-HT1A receptor through iontophoretic application of 8-OH-DPAT. IC neurons showed little selectivity for different BBVs, but spike trains were characterized by local regions of high spike probability, which we called "response features." Response features varied across neurons and also across calls for individual neurons, ranging from 1 to 7 response features for responses of single neurons to single calls. 8-OH-DPAT suppressed spikes and also reduced the numbers of response features. The weakest response features were the most likely to disappear, suggestive of an "iceberg"-like effect in which activation of the 5-HT1A receptor suppressed weakly suprathreshold response features below the spiking threshold. Because serotonin in the IC is more likely to be elevated for mounting-associated BBVs than for rejection-associated BBVs, these effects of the 5-HT1A receptor could contribute to the differential auditory processing of BBVs in different behavioral subcontexts.


Asunto(s)
Colículos Inferiores , Receptor de Serotonina 5-HT1A/fisiología , Vocalización Animal , Estimulación Acústica , Animales , Percepción Auditiva , Femenino , Colículos Inferiores/fisiología , Masculino , Mesencéfalo , Ratones , Serotonina
3.
Sci Adv ; 7(8)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33608266

RESUMEN

Color is a key feature of natural environments that higher mammals routinely use to detect food, avoid predators, and interpret social signals. The distribution of color signals in natural scenes is widely variable, ranging from uniform patches to highly nonuniform regions in which different colors lie in close proximity. Whether individual neurons are tuned to this high degree of variability of color signals is unknown. Here, we identified a distinct population of cells in macaque visual cortex (area V4) that have a heterogeneous receptive field (RF) structure in which individual subfields are tuned to different colors even though the full RF is only weakly tuned. This spatial heterogeneity in color tuning indicates a higher degree of complexity of color-encoding mechanisms in visual cortex than previously believed to efficiently extract chromatic information from the environment.


Asunto(s)
Macaca , Corteza Visual , Animales , Percepción de Color/fisiología , Mamíferos , Neuronas/fisiología , Estimulación Luminosa , Corteza Visual/fisiología
4.
Neuron ; 104(2): 402-411.e4, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31399280

RESUMEN

Incoming stimuli are encoded collectively by populations of cortical neurons, which transmit information by using a neural code thought to be predominantly redundant. Redundant coding is widely believed to reflect a design choice whereby neurons with overlapping receptive fields sample environmental stimuli to convey similar information. Here, we performed multi-electrode laminar recordings in awake monkey V1 to report significant synergistic interactions between nearby neurons within a cortical column. These interactions are clustered non-randomly across cortical layers to form synergy and redundancy hubs. Homogeneous sub-populations comprising synergy hubs decode stimulus information significantly better compared to redundancy hubs or heterogeneous sub-populations. Mechanistically, synergistic interactions emerge from the stimulus dependence of correlated activity between neurons. Our findings suggest a refinement of the prevailing ideas regarding coding schemes in sensory cortex: columnar populations can efficiently encode information due to synergistic interactions even when receptive fields overlap and shared noise between cells is high.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Macaca mulatta , Vías Visuales
5.
PLoS Comput Biol ; 12(5): e1004858, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27159884

RESUMEN

Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree) or sends out (out-degree). To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series) and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts) to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to which a neuron modifies incoming information streams depends on its topological location in the surrounding functional network.


Asunto(s)
Corteza Cerebral/fisiología , Modelos Neurológicos , Neuronas/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción , Animales , Corteza Cerebral/citología , Biología Computacional , Retroalimentación Fisiológica , Hipocampo/citología , Hipocampo/fisiología , Teoría de la Información , Ratones , Ratones Endogámicos C57BL , Análisis Multivariante , Red Nerviosa/citología , Red Nerviosa/fisiología
6.
J Neurosci ; 36(3): 670-84, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26791200

RESUMEN

The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 µm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a "rich club." We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. Significance statement: Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several hundred at a time) with such high temporal resolution (so we can know the direction of communication between neurons) for mapping networks within cortex. We found that information was not transferred equally through all neurons. Instead, ∼70% of the information passed through only 20% of the neurons. Network models suggest that this highly concentrated pattern of information transfer would be both efficient and robust to damage. Therefore, this work may help in understanding how the cortex processes information and responds to neurodegenerative diseases.


Asunto(s)
Red Nerviosa/citología , Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Animales , Animales Recién Nacidos , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...